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Abstract—There have been a number of small-scale and
large-scale technology demonstrations of asynchronous circuits,
showing that they have benefits in performance and power-
efficiency in a variety of application domains. Most recently, asyn-
chronous circuits were used in the TrueNorth neuromorphic chip
to achieve unprecedented energy-efficiency for neuromorphic
systems. However, these circuits cannot be easily adopted, because
commercially available design tools do not support asynchronous
logic. As part of the DARPA ERI effort, we are addressing this
challenge by developing a set of open-source design tools for
asynchronous circuits.
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I. INTRODUCTION

Scalable computer systems are designed as a collection of
modular components that communicate through well-defined
interfaces. The interfaces must be robust to delays and uncer-
tainty in the physical implementation of communication. This
view applies to computer systems at many levels of abstrac-
tion. The Internet is a collection of communicating computers
with message-passing through the Internet protocol. A modern
datacenter is a collection of servers that communicate via
message-passing over commodity network hardware. Even
large software systems consist of a collection of modules that
use well-defined application programming interfaces (APIs) to
communicate. Almost all computer systems disciplines have
made the wise choice to partition their problem into compo-
nents that communicate via protocols that are independent of
their physical realization—such as timing, energy, or size.

However, in chip designs today, this modular approach is
abandoned in favor of global synchrony. A global synchroniza-
tion signal (the “clock”) dictates the time budget for every step
of the computation—regardless of what is being computed.

Although this clocked design paradigm dominates the de-
sign of computers today, engineers are struggling to preserve
the fiction of simultaneity required by the clock, even within
an individual chip. This struggle is an inevitable result of
advancing technology. As transistors get smaller and faster
the delay of communication over wires dominates the cost
of local computation with transistors. Such progress renders
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the clocked paradigm a poorer and poorer abstraction for chip
design. Modern application-specific integrated chips (ASICs)
are designed as a collection of small clocked “islands” that
communicate via interfaces that break the clocking abstraction.

We are developing a collection of electronic design automa-
tion (EDA) tools that isolate the designer from the details
of the physical implementation technology, especially when
it comes to delays and timing uncertainty.1 The approach is
based on an asynchronous, modular and hierarchical design
methodology for complex chips,and it permits component re-
use from one technology to another with little or no modifi-
cation. While individual (small) modules of the chip could be
clocked, the overall system uses an asynchronous integration
approach to achieve modular composition.

II. MOTIVATION

The phrase “asynchronous digital circuits” refers to a large
family of circuits that do not use a global clock signal to
sequence steps of the computation. There are a wide range
of asynchronous logic families, ranging from circuits that are
highly robust to timing uncertainty to those that rely on strict
timing constraints for correct operation. The absence of a
global clock signal has major implications for system design.
Since each step of the computation isn’t synchronized to a
periodic timing signal, a designer can explore a significantly
richer design space.

A simple example that illustrates this difference is the design
of a decoder in a microprocessor. A decoder can be viewed as
a selection tree, where the leaves of the tree are the different
instruction classes. We can view the instruction classes as the
symbols of an alphabet Σ with some probability distribution
over the alphabet determined by instruction frequency. The
best clocked implementation of the selection tree is a balanced
one—one that minimizes the maximum depth of the tree. This
tree has depth O(log |Σ|), which determines the delay and
energy required. However, an asynchronous implementation
would use a Huffman tree, with average energy and delay
given by H(Σ) ≤ log |Σ| where H(·) is the information-
theoretic entropy of the input distribution. This observation

1It is not possible to entirely decouple the logical correctness of a design
from timing to create completely delay-insensitive circuits [19], [22]. How-
ever, it is possible to make a very mild and local timing assumption that is
easy to satisfy in practice [18].
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was used in the design of a hierarchical bus in an asynchronous
microprocessor to reduce its energy consumption and improve
performance of the main execution busses [1].

There are many examples of custom chips designed using
asynchronous circuits that demonstrate state-of-the-art per-
formance and/or power consumption. These fabricated chips
include a high-performance microprocessor [2], low-power
embedded processors [1], [3], high-throughput FPGAs [4],
SEU-immune circuits [5], [6], and (most recently) large-scale
neuromorphic systems.

Historically neuromorphic chips have used asynchronous
digital logic in conjunction with continuous-time analog cir-
cuits to emulate neurons, synapses, and axons at vaying levels
of detail. We mention three major recent projects in this space
that all use asynchronous digital logic for implementing spike-
based communication. The 5.4B transistor TrueNorth chip [7]
uses asynchronous digital logic to implement its on-chip and
chip-to-chip network in a 28nm process. It preserves a deter-
ministic execution model using a hardware spike scheduler in
spite of its massively parallel execution architecture [8]. Intel’s
recently announced Loihi chip also uses asynchronous digital
logic in a 14nm process [9]. Loihi includes a flexible routing
architecture, and has support for on-chip learning. Most re-
cently, the Braindrop chip uses a mixed-signal approach with
analog computation and asynchronous digital communication
implemented in a 28nm FDSOI process. Braindrop attains sig-
nificantly higher energy-efficiency compared to TrueNorth and
Loihi after the architectural differences between the various
chips are taken into account [10].

Researchers aiming to emulate some of these energy-
efficiency results are hard pressed to do so, simply because
there are no readily-available design automation tools for asyn-
chronous circuits. As part of the DARPA ERI initiative, we
are developing an open-source design flow for asynchronous
digital circuits. Our goal is to make asynchronous design
accessible to a broad community.

III. EDA FOR ASYNCHRONOUS VLSI SYSTEMS

While the range of possible asynchronous circuit families
are large, they all share a few common features. First, the set
of gates, or building-blocks, are more general than standard
combinational logic and flip-flops. For instance, one of the
most commonly used circuit elements is the C-element, which
is a state-holding gate whose output changes only when the
two inputs are equal—a component not found in a synchronous
standard cell library. Second, the performance of these circuits
is governed by the delays of cycles of gates. A special case
where this is clear is one where the circuit contains an odd
number of inverters to create an oscillator (the clock), and
the oscillator is used to control flip-flops. This is a traditional
synchronous circuit, and the performance is governed by
the delay of the cycle of inverters. In general, there are
many interconnected cycles in an asynchronous circuit, and so
the performance analysis problem is very different from the
clocked domain. Third, correct operation of an asynchronous
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Fig. 1. An overview of the design flow for asynchronous circuits that is under
development.

circuit requires relative path delay timing constraints on some
sets of paths.

The open-source design flow we plan to create starts with
the circuit specified using the Communicating Hardware Pro-
cesses (CHP) programming language [21]. The language is
a simple sequential programming language augmented with
communication channels that support send, receive, and probe
operations. The next step in the design flow is to decompose
the CHP into a parallel collection of processes that cooperate
to perform the computation specified by the original program
in a hierarchical manner as a sequence of small changes, where
each change can be easily verified [23], [20]. After this step,
data encoding and protocol choices are made so that every
statement in each process can be represented as a collection
of operations on Boolean-valued variables; after this step, the
program is in handshaking expansion (or HSE) form. Finally,
each individual component is converted into a circuit and
the concurrent composition of all the circuits implement the
original specification [21].

The flow we plan to develop includes a design language
called ACT (for Asynchronous circuit toolkit). This is a hier-
archical design language that includes communication chan-
nels as first-class objects. The language supports represent-
ing circuits at multiple levels of abstraction, including CHP,
HSE, gate-level, and transistor-level descriptions. By using an
integrated language, we preserve the relationships between
different levels of abstraction in the design throughout the
design flow. Design tools can be viewed as transformations in
the ACT framework. For example, logic synthesis elaborates a
CHP-level description of a module into a gate-level description
of the same module without changing its interface. A summary
of the design flow and linkages to standard, commercially used
file formats is shown in Figure 1.
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This language is the result of an evolution of over almost
three decades of research in asynchronous design grounded
in the implementation of over a dozen asynchronous VLSI
chips ranging in complexity from 0.5M transistors to 5.4B
transistors, and in technologies ranging from 0.6µm CMOS to
28nm CMOS. We also plan to develop linkages to and from
the ACT language to standard commercially-used languages
and formats such as Verilog and SPICE. This will allow inter-
operability between our flow and commercial flows.

A. Custom Design

We have already completed the development of the key
components necessary for a custom design flow for asyn-
chronous circuits. This flow supports designing asynchronous
digital logic in a manner analogous to the classic “Mead and
Conway” digital VLSI class—the first VLSI class offered in
the world. While this may seem primitive from the standpoint
of a commercial tool flow for synchronous logic, no such open
flow was previously available to a designer interested in using
asynchronous circuits.

The design flow consists of the following steps and tools.
While commercial tools can be used for some of the compo-
nents, the flow we are building uses only open-source tools.

1) Logic design by gate-level design entry. A designer cre-
ates custom digital logic gates to implement their desired
functionality. This step requires manual entry, which is
what makes this a custom flow. A designer specifies pull-
up and pull-down networks as Boolean expressions (a
notation called production rules), to describe arbitrary
logic gates. The tool required for this step is a text
editor, and the specification of a design language for
asynchronous circuits—namely, the ACT language that
we have created. ACT provides support for hierarchy,
and includes a module system.

2) Logic simulation. The gate-level design can be sim-
ulated with a logic simulator that we have developed
tailored to the needs of asynchronous circuits. Our
logic simulator has support for asynchronous-specific
requirements, including identifying switching hazards
and implementing non-deterministic choice using ar-
biters/mutex elements. This step is used for simulation-
based functional validation of the design. There are two
tools required at this step: a converter from ACT into an
input format for a simulator, and a digital simulator for
asynchronous circuits. We have implemented both these
tools.

3) Circuit optimizations. The result of circuit optimization
by gate sizing can be specified in the ACT language.
These circuits can be translated to a standard .sim /.al
file format. These files can be read by open-source sim-
ulators such as irsim that include first-order RC delay
models. irsim is an open-source simulator that has
been available for decades, and we have implemented
a converter from the ACT language to the .sim /.al
file format used by irsim.

4) Analog simulation. More accurate simulations can be
performed using an open-source circuit simulator such
as Xyce, which has been developed by Sandia National
Labs [25]. Xyce takes a SPICE file as input, and so
we created automated translators from ACT to .spice.
The SPICE format generated by our translator is generic,
and has been extensively tested with a number of cir-
cuit simulation tools including HSPICE, HSIM, spectre,
ngspice, and Xyce.

5) Layout. Custom layout is completed using the magic
VLSI layout editor. We have used this layout editor to
tape-out working silicon at process nodes from 0.6µm
down to 90nm, even though magic does not support
modern design rule checking and extraction.2

6) Post-layout simulation. Extracted layout can be
converted into a SPICE format using the built-in
ext2spice functionality in magic. We have devel-
oped our own converter that generates Xyce-format files
from magic’s extract file format.

7) Layout versus schematic. Our “schematic” is specified
using the ACT production rule language. We provide a
tool called lvp (layout v/s production rules) that can be
used to compare the extracted layout with the original
design file. This is used for verifying that the layout
matches the digital description of the circuit. This tool,
combined with a design rule checker, is used for final
sign-off.

There are also some minor tools to simplify tasks such as well
plug checking, but these are no different from those necessary
for synchronous logic. We remark that the missing piece for a
flow of this nature to be completely open-source is an open-
source design rule checker that supports modern design rules.

A class where undergraduates and first-year graduate stu-
dents learned how to design custom asynchronous digital
circuits and taped out multi-project wafer chips using the
MOSIS VLSI service was taught at Yale in Fall 2018. Students
starting the class had only taken an introductory logic design
course that covers topics such as basic gates, Karnaugh maps,
etc. Students used the tools and flow described above to
complete a number of laboratory assignments on asynchronous
design. Seven MOSIS Tinychips were taped out at the end of
the semester using the MOSIS educational program.

B. True Digital Design

We are developing the key components of an open-source
EDA flow for asynchronous circuits that implement some of
the unique aspects of the design flow. Some of the major
components include:

• A cell generator leveraging our previous work in support-
ing non-standard logic gates [14];

• A tool that can import synchronous logic into an asyn-
chronous framework so as to support synchronous module

2We rely on the robustness of asynchronous circuits to reduce the burden
on accurate extraction of the layout.
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integration based on a previously developed methol-
ogy [11];

• Timing analysis for asynchronous circuits, based on re-
cently developed theory [13];

• An asynchronous memory compiler based on the open-
RAM framework [12];

• A timing-aware placement and routing flow that respects
the timing constraints required for the correct operation
of asynchronous logic extending previous work that only
supported a small class of timing requirements [15].

In support of the flow, we also plan to develop formal equiv-
alence checking tools across different levels of abstraction (e.g.
CHP versus HSE, HSE versus PRS, etc.) using a combination
of traditional model checking and inverse synthesis, which
attempts to “undo” steps in the design flow [16], [17].

What follows is a notional flow that we envision once we
have implemnented the key design tools necessary to support
asynchronous design.

1) Design entry. A high-level (RTL-level) language is
used to specify the digital chip. For users unfamiliar
with asynchronous design, a synchronous design can be
implemented using Verilog. For users familiar with asyn-
chronous design, they would write their behavioral de-
scription in ACT directly, giving them access to a much
richer design space than accessible via synchronous
design.

2) Logic synthesis. For Verilog inputs, synchronous logic
synthesis tools would be used to create a Verilog netlist.
This netlist would then be translated into a gate-level
ACT implementation using our automated conversion
tool. For ACT inputs, we would implement a logic
synthesis tool to generate a gate-level ACT description.

3) Floorplanning. This uses the same approach as in the
synchronous logic domain.

4) Placement and routing. We would develop custom
placement and routing tools that are aware of the timing
constraints required for correct operation in the asyn-
chronous circuit domain.

5) Layout finishing. This would use the same approach as
in the synchronous domain (e.g. fill, IO pads, etc.)

The timing analysis engine we are developing will drive the
flow. The memory compiler being created would be invoked
as necessary, rather than the standard procedure of requesting
memory macros from the foundry.

This flow leverages what it can from standard synchronous
flows, while introducing new components for asynchronous
circuit design where necessary. Our goal is to have a state-of-
the-art flow available in a modern process by the end of the
DARPA IDEA program.

IV. A VERIFIED STANDARD LIBRARY

Asynchronous digital logic is usually viewed with skepti-
cism by mainstream industry and academia. Hence, almost
all the investment in design and development in the (closed)
commercial realm has been in synchronous designs.

This disadvantage (the lack of readily available asyn-
chronous components) could be turned into a strength—by
taking an open-source approach to design development from
the very start. We are embarking on the creation of the “stan-
dard ACT library”, analogous to the standard template library
for the C++ programming language. Our group has a wealth of
existing designs to draw from: two microprocessors, multiple
neuromorphic chips, digital signal processing hardware, and
FPGAs. This means we can start by populating a rich library
that can be leveraged by the entire community. Our goal is to
have a large open-source collection of hardware that makes it
easy for designers to quickly create a customized chip.

As part of the DARPA POSH program, we are developing
an FPGA emulation platform for prototyping asynchronous
logic on commercial FPGAs, as well as a hardware verification
framework for asynchronous design. Asynchronous logic is
highly modular, and hence can be verified using some ex-
tremely powerful techniques that we have developed [16], [17].
By integrating the verification effort with the standard com-
ponent library, we believe we can have a design methodology
and flow that has verification integrated into it rather than
bolted on as an afterthought. This idea is inspired by work on
verified software at Digital Equipement Corporation’s Systems
Research Center in the mid-1990s, where they developed a
formally verified systems programming library in Modula-3
using extended static checking [24].

To borrow a phrase from Thomas A. Edison, our goal is
to create a design environment and component library where
asynchronous chips can be created so easily that only wealthy
organizations can afford the large design and verification teams
necessary for state-of-the-art synchronous chips.

V. SUMMARY

We are embarking on a journey to create the first open-
source design flow for digital asynchronous logic. We have
already created tools that can be used for custom digital
design, and that have been successfully used by students
in a semester-long asynchronous digital VLSI class to tape
out chips. We are working toward a true digital flow for
asynchronous logic. In addition, we plan to release a verified
standard component library for asynchronous design inspired
by previous work at the intersection of software engineering
and formal methods.

In the spirit of open-source, we welcome participation from
the community—either as users of what we develop, or as
contributors, or as both! We thank DARPA for supporting our
efforts, and for championing open-source hardware as part of
its ERI initiative.
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